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Abstract—Knowledge graphs have become a popular method
for representing large, relational data. Similar to citation net-
works and social networks, relationships in chemical reaction
data can also be uniquely captured using a knowledge graph.
However, relatively few studies exist concerning the application of
knowledge graph mining techniques for numerical representation
of chemical reactions. In this study, we develop a pipeline
for transforming large-scale relational databases of chemical
reactions into heterogeneous graphs, in which reactions and
their reactants and products are all characterized as nodes with
connecting edges. We create nodes for reaction templates, each
of which links to multiple reactions to enhance the connectivity
of the graph, and then employ graph representation learning
methods (Node2Vec and RotatE) to generate an embedding (or
fingerprint) for each reaction node. To evaluate the efficacy of
this method, we construct classifiers to label the mechanisms
of reactions based on these fingerprints. Experimental results
show that our graph learning approach outperforms the state-
of-the-art reaction fingerprints, specifically when class labels
are not available during the representation learning process.
When the representations can be fine-tuned for the subsequent
classification task, our approach achieves comparable accuracy
to a recent Transformer-based algorithm, but with a significantly
lower computational cost.

Index Terms—Knowledge Graphs, Graph Mining, Chemical
Reaction Fingerprints, Representation Learning

I. INTRODUCTION

Employing quantitative methods to understand and catego-
rize molecules and chemical reactions has become increasingly
important. Large databases of reactions have become common
resources for chemists in the field, but their size and lack
of organization make interacting with them difficult [21].
Reaction classifications and similarity rankings facilitate this
process, allowing chemists to infer the properties of certain
reactions based on a general description of their mechanisms

[27] [16]. For instance, information about optimal reaction
conditions and yields can be found for a query reaction based
on related reactions, helping chemists predict the quality of
certain synthesis routes [20] [3]. Creating the tools to leverage
these datasets has great potential to reduce the time and cost
of chemical research and drug discovery.

Molecules are commonly represented computationally by
hydrogen-depleted molecular graphs or strings using the Sim-
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plified Molecular-Input Line-Entry System (SMILES) [29].
Many methods exist to encode either the graph or string
representations of molecules into numerical vectors [31]. This
is a more convenient format for subsequent analysis, such as
property optimization [11] or molecule classification [23].
These embedding methods have also been extended to learn
chemical reactions involving multiple molecules to generate
“fingerprints”. Traditional methods for creating fingerprints are
deterministic. Some of these methods create sparse feature
vectors by directly searching for chemical substructures or
residues that are responsible for reactions, requiring a separate
feature for each one [5]. Others try to encode all the structural
features of each molecule, such as in Morgan fingerprints,
which are created by performing message passing on the
molecular graphs of reactive species and hashing the result
[15]. These methods benefit from being highly transparent.
However, these methods often fail to capture important proper-
ties determined by molecular structure, and require very high
dimensional vectors to reach the appropriate granularity for
describing molecular properties [18].

Machine learning (ML) has allowed for the creation of more
informative fingerprints that can be tailored to the task at hand.
For example, a recent method in [26] fine-tuned Transformer-
based fingerprints (RXNFP) were shown to greatly outperform
the best performing traditional fingerprint introduced in [23]
when classifying chemical reactions. Data-driven fingerprint-
ing without hand-crafted design frees the model to create
the best possible representations for differentiating reactions.
However, this comes at the cost of model interpretability and
controllability. The present work aims to introduce fingerprint
generation methods that retain the efficacy of ML-generated
fingerprints while preserving interpretability by integrating
chemical knowledge into the encoding process.

II. METHODS

We propose a new approach as shown in Figure 1 to
automatically learn and generate reaction fingerprints that
are useful for categorization or classification of chemical
reactions. We start with a relational database of labeled chem-
ical reactions, such as Pistachio [22] or USPTO 1k TPL
[26]. Using a previously published and validated method, we
generate reaction templates, patterns that generalize individual
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Fig. 1. Overview of the proposed approach.

reaction mechanisms by matching the fragments (i.e., chemical
substructures) of each compound that are changed by the reac-
tion. The relational reaction database can then be transformed
into a knowledge graph (KG) where different types of nodes
represent reactions, compounds, fragments, and templates.
We can generate reaction fingerprints by employing graph
representation learning techniques to embed the corresponding
reaction nodes in a continuous vector space that encodes the
structure of the graph. The resultant fingerprints are evaluated
by visual inspection and reaction classification performance.

A. Datasets

We use the proprietary Pistachio dataset [22] and publicly
available USPTO 1k TPL dataset [26]. Each dataset is split
into training, validation, and test sets (80%, 10%, and 10%
respectively, matching the recent work proposing RXNFP).
USPTO 1k TPL has 445k reactions associated with 1000
labels for reaction types. Pistachio (version 2021Q1) contains
3,348,453 reactions, and hierarchical labels that follow the
RXNO ontology [24]. These labels are algorithmically as-
signed by NameRXN using a large rule-base of known reaction
mechanisms [25]. Each label contains a general category from
one of 12 superclasses, with one representing all reactions
that could not be classified by the software. Each superclass
is further divided into intermediate classes, which themselves
may be divided into several fine classes. In total, there are
1,385 fine classes. Duplicate reactions are removed, and RDKit
[1] and Open Babel [17] are used to verify and canonicalize
the reactions and compounds. We also move reagents into
the part of the SMILE that is designated for reactants, since
reactants and reagents are not always explicitly separated in
reaction datasets.

B. Extracting Reaction Templates

We generalize reactions by finding “reactive fragments”,
the groups of atoms in each compound at which bonds are
broken or formed during the reaction, as well as surrounding
atoms that play a role. If reactive fragments are the same for
two reactions, and the resultant fragments of the products
are the same, then the underlying chemical processes are
likely similar. Together, the reactive fragments of the reactants
and products of a reaction form a sort of “template”, which
can be used to group similar reactions. The fragments and
templates can also be expressed using strings according to the
SMILES arbitrary target specification (SMARTS). We employ

511

the algorithm described in [2] to generate template SMARTS
from reaction SMILES. An example template of a reaction is
illustrated in Fig. 2.
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Fig. 2. An example reaction (top) and its template (bottom). This reaction
involves the coupling of thioglycolic acid and 4-aminophenol, the first and
second molecules from the left. The hydrochloric acid, third from the left, is
a reagent and is not consumed by the reaction. The left side of the template
identifies the relevant functional group from each reactant: the carboxyl group
from the thioglycolic acid and the amine group from the 4-aminophenol. The
right side of the template shows how these functional groups change during
the reaction, producing a single amide group. Other reactions where the same
functional groups combine in this way will have the same template.

Although the templates do not perfectly correspond to
actual reaction mechanisms, they still represent meaningful
information about a reaction, which is used in the construction
of the KG. For conventional machine learning methods, there
is no straightforward way to incorporate the fact that two
reactions share a template. For a large reaction database, a
large number of unique templates may exist, and it can be chal-
lenging to represent these templates with numerical vectors
that reflect their relations. We thus employ a graph structure to
characterize these relationships among the different reactions.

C. Constructing the Knowledge Graph

Similar to methods used in natural language processing for
representing highly structured data [12], KGs have been used
previously by chemists to perform tasks like synthesis route
prediction [13]. A KG can reflect chemical knowledge.
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Fig. 3. The schema for our chemical knowledge graph.

The schema of our graph is shown in Fig. 3. At the center
is the reaction node, which can link to compound nodes and
templates. The templates are also linked to the fragments that
define them, which themselves are linked to the matching
compounds. We do not create separate node types for reactants
and products, because the same compound can be a reactant to
one reaction but a product to another. Instead, separate reactant
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and product edge-types are created between reaction nodes
and compound nodes. Multiple fragments may be linked to a
single molecule because different parts of the same molecule
may be used in different reactions. A single fragment may
be designated as a reactive subgraph of multiple compounds.
In the resulting KG, reactions that do not directly share any
information can still be identified as similar based on the
number and types of paths between them.

Reaction fingerprints can be created using labels from the
downstream task, which we refer to as supervised fingerprints.
To generate fingerprints that differentiate reaction categories,
a new type of nodes — “reaction class” nodes — can also be
included to increase connectivity between reactions with the
same class label. Reactions with known labels are linked to
the corresponding reaction class nodes, which will force the
embedding algorithm to consider the labels when creating the
fingerprints, directly influencing their spatial organization. If
fingerprints are not generated using any task-specific labels
(i.e., the KG has no reaction class nodes), we refer to them as
unsupervised fingerprints. We use Neo4j (https://neodj.com/)
to create and query a KG before exporting them into various
formats for the different learning algorithms.

D. Mining the Knowledge Graph

We now use the structure of the KG to construct embeddings
for each node in the graph. A variety of methods have been
developed for representation learning of KGs, and any of them
can be used in our pipeline. Here we employ two widely used
methods: RotatE [10] and Node2Vec [8]. RotatE, implemented
in the open source package OpenKE [10], represents entities as
complex vectors and relationships as rotations in the complex
plane. Triplets represent possible relationships in the form of
a head node h connected to a tail node ¢ by a relationship 7.
RotatE creates corresponding embeddings ey, e, e, € C", and
optimize them to maximize the score function —||ej, oe, —e||?
if the triplets exist in the KG and minimize it if they do not.
An advantage of this method is that we can classify unlabeled
reactions in a knowledge graph with reaction label nodes
without training another classifier, because we can identify the
‘reaction class’ node whose embedding maximizes the scoring
function with the embeddings of a given reaction node and the
“Label” relationship (see Fig. 3).

Another popular tool for generating node embeddings is
Node2Vec, which functions like Word2Vec [14] when using
random walks on the KG as “sentences” and the nodes as
“words”. Our experiments show that using a continuous-bag-
of-words (CBOW) model to learn node embeddings for our
KG was not only effective, but also computationally effi-
cient relative to deep fingerprints. Compared with an existing
transformer-based model, RXNFP, our KG mining approach
is substantially more efficient. For example, fine-tuning the
RXNFP fingerprints on the Pistachio dataset took 107 hours
on a Tesla V100 graphics card with 32GB of RAM. In contrast,
using the same group of CPUs without GPUs, Node2Vec was
trained on Pistachio in 19 hours (including the time needed to
generate random walks).
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E. Prediction

The reaction fingerprints constructed from our reaction KG
can be used in subsequent analysis. To evaluate the quality
of the fingerprints, we test whether they can help classify the
different reactions into correct categories. We compare our
KG based fingerprints with two other reaction fingerprints:
traditional Morgan fingerprints and RXNFP fingerprints, the
latter of which are generated by the encoder of a Bidirectional
Encoder Representations (BERT) model [4]. In the pretraining
phase, the BERT model is trained on a masked language
modeling task, where it must predict missing tokens in a
partially observed SMILES string describing the reaction. We
refer to these as “untuned” RXNFP fingerprints, since the
BERT decoder can subsequently be replaced by a classification
head in order to fine-tune the fingerprints for predicting
reaction labels. The fingerprints generated in this supervised
way are singly referred to as “RXNFP” in our result table.
The supervised fingerprinting model is both pretrained and
fine-tuned on the training set, and then the resultant model is
applied to the reactions in the test set to create their fingerprints
and report the classification performance.

For both supervised and unsupervised fingerprints, separate
classifiers are created and tuned to evaluate their utility in
reaction classification for pair comparison. Based on each
fingerprint, we create a k-nearest neighbor (k-NN) classifier
(tested with k=5, using cosine similarity) and a one-vs-rest
logistic regression (LR) classifier. The training sets for these
classifiers are the same reactions used to fine-tune the su-
pervised fingerprints. TMAP [19] is used to visualize high
dimensional data as the minimum spanning tree of its 10-
nearest neighbor graph based on cosine similarity.

III. RESULTS AND DISCUSSION

In this section, we demonstrate the performance of KG-
based reaction fingerprints and discuss our experimental re-
sults on the two benchmark datasets.

A. Classification Performance

Tables I to IV show the results of our experiments with 5-
NN and LR as classifiers. In the case of the fine-tuned RXNFP
model, we include the accuracy for the classification head with
the name ‘“Head”, and in the case of supervised RotatE, we
include the accuracy for classification based on the enforced
constraints with the name “RotatE” since no additional classi-
fier was used. In our experiments, all fingerprints tested had a
fixed size of 256 dimensions for fair comparison. For fair com-
parison, we compared with Transformer RXNFP fingerprint
learning in the same unsupervised and supervised settings (the
codes were also provided by the original authors). Note that
the classic hand-crafted Morgan fingerprinting approach does
not use any supervision label, so we only show its performance
in the unsupervised learning setting.

All classifiers were compared according to three well-
established metrics: classification accuracy, the confusion en-
tropy of the confusion matrix (CEN) [30], and the Matthews
Correlation Coefficient (MCC) [7]. Tables 1 and 2 provide
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TABLE I
PISTACHIO: UNSUPERVISED FINGERPRINT PERFORMANCE METRICS

Accuracy Overall MCC Overall CEN

Fingerprint Classifier
Morgan Fingerprints 5-NN 0.688 0.675 0.218
LR 0.671 0.651 0.199
Untuned RXNFP 5-NN 0.811 0.802 0.126
LR 0.781 0.768 0.141
Unsupervised Node2Vec 5-NN 0.815 0.809 0.114
LR 0.946 0.944 0.039

TABLE II

PISTACHIO: SUPERVISED FINGERPRINT PERFORMANCE METRICS

Accuracy Overall MCC Overall CEN

Fingerprint Classifier
RXNFP 5-NN 0.986 0.986 0.012
Head 0.978 0.976 0.017
LR 0.986 0.985 0.012
Supervised RotatE 5-NN 0.843 0.841 0.102
LR 0.754 0.755 0.158
RotatE 0.696 0.701 0.173
Supervised Node2Vec 5-NN 0.851 0.850 0.088
LR 0.962 0.960 0.031

TABLE III

USPTO 1K TPL: UNSUPERVISED FINGERPRINT PERFORMANCE METRICS

Accuracy Overall MCC Overall CEN

Fingerprint Classifier
Morgan Fingerprints 5-NN 0.692 0.691 0.182
LR 0.856 0.856 0.074
Untuned RXNFP 5-NN 0.699 0.698 0.150
LR 0.564 0.561 0.207
Unsupervised Node2Vec 5-NN 0.883 0.882 0.042
LR 0.943 0.943 0.020

TABLE IV

USPTO-1K-TPL: SUPERVISED FINGERPRINT PERFORMANCE METRICS

Accuracy Overall MCC Overall CEN

Fingerprint Classifier
RXNFP 5-NN 0.984 0.984 0.008
Head 0.937 0.936 0.016
LR 0.981 0.981 0.009
Supervised RotatE 5-NN 0.901 0.900 0.039
LR 0.890 0.889 0.040
RotatE 0.870 0.870 0.045
Supervised Node2Vec 5-NN 0.942 0.942 0.022
LR 0.978 0.978 0.010

classifier accuracy for different methods on Pistachio in the
unsupervised and supervised representation learning settings
respectively. Tables 3 and 4 show the same classification
results for USPTO 1k TPL. It is important to note that
on the USPTO 1k TPL dataset, our approach has had an
advantage over other methods in the unsupervised learning
setting because it uses the algorithm from [2] to create the
templates for the KG. At the same time, the class labels
of this dataset are actually hashes of templates generated
by the algorithm from [28], which is a slightly modified
version of our algorithm that has been tailored to the USPTO
dataset, leading to higher-quality templates. Experiments on
the Pistachio dataset did not have this problem, as the reaction
labels were created completely independently of the templates.

In the unsupervised setting, the reaction node embeddings
from Node2Vec achieve substantially higher classification ac-
curacy with a LR classifier than that of RXNFP. The low CEN
and high MCC indicate that this high accuracy is not just due
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Fig. 4. Reaction atlas of unsupervised Node2Vec embeddings from the
Pistachio test set, colored by superclass.

to overfitting the imbalance in our data sets. In the supervised
setting, the Node2Vec embeddings performed slightly better
than their unsupervised counterpart, and were comparable to
RXNFP which had slightly higher accuracy. This is especially
significant given that generating the Node2Vec embeddings
only requires a fraction of the computation time needed
by RXNFP. Even RotatE, a simpler, pairwise embedding
method, achieved reasonable performance. Simply checking
the geometric relationship that it enforces between reactions
and labels yields higher accuracy than using LR or 5-NN
classification with traditional Morgan fingerprints.

B. Visualizing the KG-based Fingerprints

Here we focus on visualizing the unsupervised KG-based
fingerprints generated by Node2Vec, because they achieve the
best results among all unsupervised approaches. Fig. 4 shows
the TMAP diagram for a sample of the unsupervised embed-
dings from the Pistachio test set, with each point representing
one reaction. Distance between the embeddings was defined
as their cosine similarity. Except for the assignment of colors
to tree nodes, the reaction labels were not used in the process
of generating this figure. The only probabilistic model trained
in the process was the 1-layer neural network in Node2Vec.

The colors represent one of eleven reaction superclasses
[6], a general grouping over the specific labels in the database.
These class assignments were not present in either of the
Pistachio KGs, and were not seen at any point when generating
these representations. The gray points represent uncategorized
reactions. Based on Fig. 4, reactions in the same superclass
tend to be clustered together in the embedding space learned
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Fig. 5. Reaction atlas of heteroatom alkylation and arylation reactions from
the Pistachio test set based on the reaction embeddings learned by the
unsupervised Node2Vec, colored by subclass.

by Node2Vec. Further exploration of the diagram reveals that
the subclasses within each superclass (1,385 in total) often
separate themselves into distinct areas within the regions
of their respective superclasses. For example, examining the
cluster of deprotection reactions (labeled 6.x.x) depicted by
the yellow branch at the bottom of the diagram, we can see
that it is actually split into distinct subclusters of CO2H-
Me deprotections, CO2H-tBu deprotections, and CO2H-Et
Deprotections. To further demonstrate this, in Fig. 5 we focus
on “Heteroatom Alkylation and Arylation” reactions (labeled
1.x.x). We plot reactions belonging to the ten most common
subclasses out of the total 138, which each correspond to a
different color in the diagram.

The spatial cohesion of the fingerprints indicates that their
organization aligns with existing chemical knowledge. More
specifically, the location of each fingerprint encodes infor-
mation about the corresponding reaction’s mechanism. Only
rudimentary heuristics were used to explicitly relate reactions
in the original data, indicating that this additional knowledge
appears in the structure of the graph itself.

C. KG-Assisted Interpretation of Results

Using Node2Vec and RotatE, the spatial arrangement of
node embeddings encodes the topology of the graph. In the
case of Node2Vec, the embedding network learns about the
graph topology through random walks, so for each reaction
random walks starting from the reaction’s node can be used
to directly visualize the information being encoded.

Starting from reaction nodes in the unsupervised KG, we
take 1000 random walks of length 10, traversing edges in both
directions. During each step of these random walks, all edges
are assigned equal probability except the edge traversed to find
the current node, which is assigned probability 0. The nodes
reached during these walks form an induced subgraph of the
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KG that describes the local neighborhood of the reaction, with
the number of times each node was found signifying a type of
“reachability” from the reaction. Under these conditions, the
walks may reach several thousand nodes, so nodes that were
reached less than 3 times were excluded. Then, to facilitate
visualization, we perform breadth-first search from the start
node to obtain a tree . The result is shown in Fig. 6.

Fig. 6 shows that reaction nodes with matching classes
were found more frequently than those reactions from any
other class during random walks from the original reaction
node. The matching reactions were reached in several different
ways: some directly shared reactants with the original reaction,
others shared the same template, and some had more complex
relationships.

IV. DISCUSSION AND CONCLUSION

These results provide compelling evidence that graphs built
upon chemical data can encode far more than the information
used to construct them. This fingerprint generation method
is able to incorporate abstract chemical knowledge in a way
that is straightforward, interpretable, and that can be tailored
to specific tasks in the KG generation step, giving chemists
greater control over the final fingerprints being generated.
Furthermore, by enabling transductive learning (including both
training and test reactions in a KG but without labels), this
method can outperform all existing methods on unsupervised
classification performance. With fine-tuning, it achieves com-
parable performance to the state-of-the-art supervised classifi-
cation with significantly less computation.

This work has several limitations. In the current approach,
similarities and differences between molecular parts that do
not change during the reaction are not considered in the KG,
so they may not be reflected in the relative distances of the
reaction fingerprints. However, since such connectivity is less
relevant to the chosen classification task, we do not observe
performance drop. In other fingerprint applications, the KG
generation process may be modified to incorporate the relevant
edges. More generally, this approach uses transductive learning
and cannot generate embeddings for unseen reactions. To ex-
tend this method to the inductive setting where a model can be
created and applied to unseen reactions to predict their types,
graph nodes can be associated with attributes, such as the
structural information (e.g., SMILES), chemical properties, or
even fingerprints for each compound, reaction, fragment, and
template. Then, other graph representation learning methods
capable of induction such as GraphSage [9] can be used to
embed the nodes. This way, we can integrate both attributes of
individual nodes and connectivity among nodes in the graph.
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